Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.

نویسندگان

  • P Fabrizio
  • S D Pletcher
  • N Minois
  • J W Vaupel
  • V D Longo
چکیده

Mutations in RAS2, CYR1, and SCH9 extend the chronological life span in Saccharomyces cerevisiae by activating stress-resistance transcription factors and mitochondrial superoxide dismutase (Sod2). Here we show that mutations in CYR1 and SCH9 also extend the replicative life span of individual yeast mother cells. However, the triple deletion of stress-resistance genes MSN2/MSN4 and RIM15, which causes a major decrease in chronological life span, extends replicative life span. Similarly, the overexpression of superoxide dismutases, which extends chronological survival, shortens the replicative life span and prevents budding in 30-40% of virgin mother cells. These results suggest that stress-resistance transcription factors Msn2/Msn4 negatively regulate budding and the replicative life span in part by increasing SOD2 expression. The role of superoxide dismutases and of other stress-resistance proteins in extending the chronological life span of yeast, worms, and flies indicates that the negative effect of Sod2, Msn2/Msn4/Rim15 on the replicative life span of S. cerevisiae is independent of aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOD2 functions downstream of Sch9 to extend longevity in yeast.

Signal transduction pathways inactivated during periods of starvation are implicated in the regulation of longevity in organisms ranging from yeast to mammals, but the mechanisms responsible for life-span extension are poorly understood. Chronological life-span extension in S. cerevisiae cyr1 and sch9 mutants is mediated by the stress-resistance proteins Msn2/Msn4 and Rim15. Here we show that m...

متن کامل

Regulation of longevity and stress resistance by Sch9 in yeast.

The protein kinase Akt/protein kinase B (PKB) is implicated in insulin signaling in mammals and functions in a pathway that regulates longevity and stress resistance in Caenorhabditis elegans. We screened for long-lived mutants in nondividing yeast Saccharomyces cerevisiae and identified mutations in adenylate cyclase and SCH9, which is homologous to Akt/PKB, that increase resistance to oxidant...

متن کامل

Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response.

Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 pr...

متن کامل

Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae

Msn2 and Msn4 are two related transcriptional activators that mediate a general response to stress in yeast Saccharomyces cerevisiae by eliciting the expression of specific sets of genes. In response to stress or nutritional limitation, Msn2 and Msn4 migrate from the cytoplasm to the nucleus. Using GFP-tagged constructs and high-resolution time-lapse video microscopy on single cells, we show th...

متن کامل

The Small Molecule Triclabendazole Decreases the Intracellular Level of Cyclic AMP and Increases Resistance to Stress in Saccharomyces cerevisiae

The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 557 1-3  شماره 

صفحات  -

تاریخ انتشار 2004